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Abstract. A convex body, with high thermal conductivity, is immersed in a nonuniformly flowing gas. The
body is small compared to the mean free path, which in turn is small compared to the macroscopic length
scale of the gas. The equilibrium temperature Tw of the body is calculated. For an axially symmetric body
in a simply shearing gas of temperature T one obtains the equilibrium temperature

(this is for the case that the body is at rest with respect to the gas). 0, (p are polar angles of the axis of the
body (z is the polar axis), a is a geometric shape factor of the body (which vanishes for a sphere) and /3
depends on the Sonine coefficients. /3 takes the value 1 if only the lowest order Sonine term is retained, p
is the pressure and pxy (the non- vanishing component of) the viscous pressure tensor.

INTRODUCTION

The phenomenon of thermophoresis - the force acting on a small body in a gas with a temperature gradient
- is in the limit of freee molecular flow caused by the non-Maxwellian nature of the molecular distribution
function, see [1]. There is an analogous phenomenon: in a shearing gas, due to the non-Maxwellian character
of the molecular distribution function, there will be a heat transfer to a small body. - For a general review of
free molecular flow, see Schaaf [2] . See also Sone [3] .

Bell and Schaaf [4], see also Schaaf [2] calculated the heat transfer to an infinite circular cylinder in the free
molecular flow approximation. They used the first order Chapman-Enskog distribution function. As a result
they found a contribution to the heat transfer from the shearing of the gas. Consequently, the equilibrium
temperature of the body was also shown to be affected by the shearing of the gas.

In the present work, we consider a convex body, which is small compared to the mean free path. The
contribution from the mean flow of the gas is calculated up to second order in the Mach number and the
contribution from the shearing is calculated to first order in the Mach number and first order in the Knudsen
number. We assume free molecular flow, see Kogan [5]. We also use the common, test body, approximation of
neglecting the influence of the body on the incoming flow of gas molecules.

We use the Maxwell model for the surface assuming that a fraction ar of the incoming particles is diffusively
reflected, whereas the fraction (1 — ar) is specularly reflected. We further assume that the surface of the body
is characterized by the energy accomodation coefficient ae. See Kogan [5]. The gas is taken to be monatomic.

The equilibrium temperature is first derived for a general distribution function. This is first applied to a
homogeneous flow and then to a shearing flow with zero velocity at the body. The case of a shearing flow with
non-zero velocity at the body is in the approximation used given by superposition of the two contributions.

GENERAL DISTRIBUTION FUNCTION

Net influx of kinetic energy

Let us now start by writing down some relations of general validity. See Kogan [5] .
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The Maxwellian distribution is written

- <»
Here, n is the number density of molecules, ks the Boltzmann constant, T the temperature, and m the
molecular mass. Ci is the dimensionless velocity

C -
Cj-

where Ci is the ordinary molecular velocity.
For a general distribution, the total influx of particles is

(C-n)/d3C. (3)
n-C<0

In particular, for a Maxwellian distribution N^) is given by

(4)

The conservation of particles at the surface is expressed by

Index r refers to reflected and w to wall.
The total influx of kinetic energy is

n-CXO

In particular, for a Maxwellian it takes the value

EM =
According to the Maxwell model, the outflux of particles is given by

E(r) = (1- ar)Ew + aTEM(Tr). (8)

Thus the net influx of kinetic energy is

E = E(i) - E(r} = ar(E(n - EM(Tr)). (9)

Let us also introduce the correspondence of (8) for wall conditions

E(w) = (1 - ar)E(i) + aTEM(Tw). (10)

The energy accomodation coefficient is given by

^ = E - E _
-

Using (5) we find the net influx of kinetic energy as

E = aear(E({) - EM(TW)) (12)

= aear(E(i)-^r
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Equilibrium temperature for high conductivity body

Let us now for simplicity assume that ae and ar are constant. We further assume that the thermal conduc-
tivity of the body is so high, that Tw is uniform in the body. The total influx of kinetic energy to the body
can then be written (S is the area of the body)

JEds = aeaTEMS[(^) - f(|% (13)

The overbar denotes surface average

At stationary conditions, the (equilibrium) temperature of the body is thus

HOMOGENEOUS FLOW

Let us now consider a homogeneous flow of the gas. See Bird [8]. We introduce the dimensionless mean
velocity (e is a unit vector)

The speed of sound is given by

Here, 7 = 5/3 for a monatomic gas. The Mach number is then

(17)

The distibution function is a Maxwellian, where d is replaced by d — Vi.
The particle influx is now calculated as

(-V2) - V5FVn(l + erf (-Vn))]- (18)

If we restrict ourselves to terms up to second order in the Mach number, we can use

erf(x) « —;=x,
V71"

giving

We find for the surface average (the term linear in V gives no contribution as the surface is closed)

— i + V2N-e-e- (19}— -L T V IVijC-iVj. \L*J

Here, the purely geometric tensor Nij is (S is the area of the body)
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(20)

It is convenient to split Nij into its irreducible components (< ... > denotes symmetric traceless part)

(21)

The eigenvalues of N<ij> lie in the interval [—1/3,2/3]. Let us note that N<ij> vanishes for a sphere.
For an axially symmetric body, with axis N, the tensor N<ij> is given by a scalar a,

1V^'-^ — nlV^-lV-^ (9s)}lv<Oj> — L61v<Olvj>. \**J

Here,

3 1 f 9 1a=-- I [(n - N)2 - -]ds (23)

For a flat body a = 1. For a needle shaped body a = —1/2.
Similarly we have

V2 V2 5
E(i) = £?M {(-^-+1) exp(—V2) — ̂ Vn(— + -)[1 + erf (—Vn)]}. (24)

Approximately,

The surface average is thus

(25)

Inserting (19) and (25) into (13) we find the total influx of kinetic energy for a high conductivity body. (14)
gives the equilibrium temperature to second order in the Mach number as

f = 1 + ̂ (1 + lN<ij>eiej). (26)

Axially symmetric body

Let us consider an axially symmetric body. If there is no external heat transfer to the body, in stationary
conditions, it will have the temperature (with an error V3) - $ is the angle between the axis of the body and
the direction of the flow -

+ (3cos^-l)]. (27)

For a sphere,

2k = 1 + {JMa2. (28)

This is also the mean temperature if a small body of arbitrary shape is randomly oriented.
For a needle shaped body

1 — — rn<52 $} (9Q}JL — — \jvJD (/ I \*utJ I

In particular, if the axis of the body is orthogonal to the flow,

— = 1 + -Ma2. (30)rw~i Q

For an infinite cylinder with axis orthogonal to the flow, this coincides with the result of Bell and Schaaf [4].
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SHEARING FLOW

Chapman-Enskog solution

In a pure shearing flow, according to the Chapman-Enskog method, the distribution function is given by, see
Chapman & Cowling [6]

, (31)
TL

B is usually expanded in Sonine polynomials

(32)
n=0

The coefficient 60 is related to the viscosity,

H = kBTb0

Let us introduce

B(C2) = B(C2)/b0

Using the gas law p = nksT, we can write (p<ij> = —2fj,v<ij> is the viscous pressure tensor)

</>=±B(C2)C<iCj>P<ij>. (33)

Particle flux

The shearing gives the following contribution to the influx of particles

Here, we have introduced the dimensionless integral

CnB(C2)C<iCj>e~c2 d3C = lNn<mj>
cn<o

The last expression follows from symmetry. Contracting twice with the normal vector and introducing spherical
polar coordinates, we find, writing

Cn = Ck-nk, (34)

K Jcn<0 3

= --0NK. (35)
7T

Here,

PN= I B(C2)C5e~c2dC (36)
Jo

= 2J0
 B(x}x2e *dX'
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Note that fa = 1, if only the first term of the expansion of 0 in Sonine polynomials is retained. This is usually
a good approximation. - Further, the angular integral is

r f (cos2<9--)sin0cos0d<9 = --.
A/2 3 6

We conclude that
_ 1

2

The contribution from the shearing to the inflow rate of particles is thus

PN P<JJ>— ———n^n

The total inflow of particles is then given by

Nu) = NM(l + ̂ f ̂ ^n<^>) (37)2 p

Hence,

^ =(1 + %^V«,>) (38)

Flux of kinetic energy

Let us write the contribution from the shearing to E^)

Here, the tensor 1$ is (the expression to the right follows from symmetry)

!$ = - [ C*CnB(C*)C<iCj>e-c'd3C
K Jcn<o

Contracting lij with UiUj we find, using spherical polar coordinates,

IE = -JEK.
7T

In this expression, the radial velocity integral is

JE= rB(C2}C7e-c2dC = ^- f°° B(x)x3e~xdx.
Jo * Jo

Let us introduce a dimensionless coefficient

i r°°PE=X B(x)x3e~xdx. (39)
o Jo

Usually, the n = 0 term in (32) is the dominating one. If the other terms are neglected, @E takes the value 1 .
- JE can now be written

JE =
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Hence,

IE = -f/fe-

Thus the total rate at which heat is incoming is

<inj>)EM (40)

We can easily estimate the size of the contribution from shearing. We have p,/p ~ X/cs , where A is the mean
free path and cs the speed of sound. If we estimate v<ij> ~ v/l, we find the relative size of the contribution
to be MaKn, (Ma = v/cs the Mach number and Kn = X/l the Knudsen number.)

The total incident flux is thus

p

Total rate of heat transferred to the body

Body of arbitrary shape

The total influx of kinetic energy is now given by (13).
We see that also for Tw = T, there is a net influx given by

(42)

We have here introduced

P = 3PE- 2/3jv- (43)

Note that /? = 1, if only the first term in the Sonine polymial expansion of (j) is retained.
Let us now consider a body, which adjusts its temperature so that the total inflow vanishes. To a first

approximation in the shearing,

(44)
JL *± p

where /3 is given by (43).

Axially symmetric bodies

Let us in particular consider an axially symmetric body in plane shear flow. In suitable coordinates, the
only non-vanishing component of the velocity gradient is vx^y. Let us denote the polar angles (z is the polar
axis) of the axial direction of the body by 0, (p. Then

In particular, for a body free to adjust its temperature until the total heat flow vanishes, the temperature
of the body relaxes to

(45)

For a needle-shaped body, putting /3 = 1 (neglecting higher Sonine polynomials), this coincides with the result
of Bell and Schaaf [4].
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A needle-shaped body will then settle down to a temperature, which is higher than that of the surrounding
gas, if the projection onto the plane of shearing of the axis of the body is in the first quadrant, but at a
temperature, which is lower than that of the gas, if the axis is in the second quadrant.

Let us, finally, consider a body, which is kept at the temperature of the surrounding gas. We then have the
total rate at which heat is transferred to the body

e T - sin2 t f sin(2p). (46)8 p

We conclude that needle-shaped bodies absorb heat, when the projection of their axes on the plane of shearing
lie in the first quadrant. They emit heat when their axes are in the second quadrant. For flat bodies the
situation is reversed.

TRANSLATION AND SHEARING

For an arbitrary flow field with shear, we can to the order considered add the two contributions to ̂  — 1
to find (we recall that e is the unit vector in the direction of the flow)

= 1 + jMa2 + ( M a V ; + )^<«>- (47)

This is with an error Ma3, Kn Ma2, Kn2 Ma.
Let now also consider an axially symmetric body in a flow field, where the only non-vanishing velocity

component vx is a function of y. This means that e • N = COST? is replaced by sin 9 cos (p. We obtain

Totally,

5Ma2 ,„ a, . 9 ^r 9 Xv . ,rt M ,,^-g—(1 - 4) + asin20[-^-cos2<p + |i*sin(2^)]. (48)
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